Nanostructural characterization of catfish skin gelatin using atomic force microscopy.
نویسندگان
چکیده
To determine the nanostructure of gelatin from catfish (Ictalurus punctatus) skin, atomic force microscopy (AFM) was used to study gelatin aggregates. The gelatin was extracted at an optimized acid concentration after alkaline processing. First, the AFM imaging parameters were optimized to obtain high-quality images. Then height mode with a 2-dimensional plane, 3-dimensional topographical images, and error signal mode images, which removed slow variations in surface topography but highlighted the edges of sample features, were used to analyze the structure of particles. The results describe fish gelatin at a nanoscale level for the first time and are compared with AFM images of mammalian gelatins. Both annular pores with diameters averaging 118 nm and spherical aggregates with an average diameter of 267 nm were seen in the AFM images of fish gelatin. From the AFM images, we propose that the structures formed were determined by whether the solution penetrated into the gelatin molecules evenly or not during hydrolysis. A scheme for the formation of annular pores and spherical aggregates is proposed.
منابع مشابه
Characterization of Fish Gelatin at Nanoscale Using Atomic Force Microscopy
Atomic force microscopy (AFM) was used as a meaningful tool to characterize the nanostructure of gelatin from catfish (Ictalurus punctatus) skin. The gelatins extracted with pretreatments including acid pretreatment, alkaline pretreatment, and alkaline followed by acid pretreatment (optimized extraction conditions). The resulting gelatins were imaged using AFM and their nanostructure was studie...
متن کاملEffects of concentration on nanostructural images and physical properties of gelatin from channel catfish skins
Physical properties are crucial to gelatin utilization and the physical properties are determined by structure. Therefore, it is important to investigate the nanostructure and physical properties of gelatin over the full range of concentrations which are widely applied in research and industry. Nanostructure of gelatin can be investigated by atomic force microscopy (AFM). However, it is hard to...
متن کاملFabrication and nanostructural characterization of TiO2 nanorods
TiO2 nanorods are synthesized by a thermal corrosion. In present work, synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases, by using the sol-gel method and alkaline corrosion are reported. The morphologies and crystal structures of TiO2 nanorods are characterized by use of field emission scanning electron microscopy, atomic force microscopy and X-ray diffractometer techniques. The o...
متن کاملCharacterization and optimization of using calendula offlcinalis extract in fabrication of polycaprolactone-gelatin electrospun nanofibers for wound dressing applications
Wound dressing applications of nanofibers is a progressive filed of research which could be enhanced by using medicinal plant extract to bring some more advantages. Here we optimized the electrospinning method for fabrication of polycaprolactone-gelatin mixed with a medicinal plant extract, calendula offlcinalis. Characterization techniques including Fourier-transform infrared spectroscopy (FTI...
متن کاملAtomic Force Microscopy Application in Biological Research: A Review Study
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of food science
دوره 72 8 شماره
صفحات -
تاریخ انتشار 2007